Superconvergence of a Finite Element Method for Linear Integro-differential Problems
نویسندگان
چکیده
We introduce a new way of approximating initial condition to the semidiscrete finite element method for integro-differential equations using any degree of elements. We obtain several superconvergence results for the error between the approximate solution and the Ritz-Volterra projection of the exact solution. For k > 1, we obtain first order gain in Lp(2≤ p ≤∞) norm, second order in W1,p(2≤ p ≤∞) norm and almost second order in W1,∞ norm. For k = 1, we obtain first order gain in W1,p(2 ≤ p ≤ ∞) norms. Further, applying interpolated postprocessing technique to the approximate solution, we get one order global superconvergence between the exact solution and the interpolation of the approximate solution in the Lp and W1,p(2≤ p ≤∞).
منابع مشابه
J. KSIAM Vol.8, No.2, 23-38, 2004 SUPERCONVERGENCE OF FINITE ELEMENT METHODS FOR LINEAR QUASI-PARABOLIC INTEGRO-DIFFERENTIAL EQUATIONS
We consider finite element methods applied to a class of quasi parabolic integro-differential equations in R. Global strong superconvergence, which only requires that partitions are quasi-uniform, is investigated for the error between the approximate solution and the Sobolev-Volterra projection of the exact solution. Two order superconvergence results are demonstrated in W (Ω) and Lp(Ω), for 2 ...
متن کاملNON-STANDARD FINITE DIFFERENCE METHOD FOR NUMERICAL SOLUTION OF SECOND ORDER LINEAR FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS
In this article we have considered a non-standard finite difference method for the solution of second order Fredholm integro differential equation type initial value problems. The non-standard finite difference method and the composite trapezoidal quadrature method is used to transform the Fredholm integro-differential equation into a system of equations. We have also developed a numerical met...
متن کاملOptimal order finite element approximation for a hyperbolic integro-differential equation
Semidiscrete finite element approximation of a hyperbolic type integro-differential equation is studied. The model problem is treated as the wave equation which is perturbed with a memory term. Stability estimates are obtained for a slightly more general problem. These, based on energy method, are used to prove optimal order a priori error estimates.
متن کاملSemi-discrete Finite Element Approximations for Linear Parabolic Integro-di erential Equations with Integrable Kernels
In this paper we consider nite element methods for general parabolic integro-diierential equations with integrable kernels. A new approach is taken, which allows us to derive optimal L p (2 p 1) error estimates and superconvergence. The main advantage of our method is that the semidiscrete nite element approximations for linear equations, with both smooth and integrable kernels, can be treated ...
متن کاملFinite Volume Element Approximations of Integro-differential Parabolic Problems
In this paper we study nite volume element approximations for two dimensional parabolic integro di erential equations arising in modeling of nonlocal reactive ows in porous media These types of ows are also called NonFickian ows and exhibit mixing length growth For simplicity we only consider linear nite vol ume element methods although higher order volume elements can be considered as well und...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000